Far-field thermal imaging below diffraction limit
نویسندگان
چکیده
منابع مشابه
Optical Hyperlens: Far-field imaging beyond the diffraction limit.
We propose an approach to far-field optical imaging beyond the diffraction limit. The proposed system allows image magnification, is robust with respect to material losses and can be fabricated by adapting existing metamaterial technologies in a cylindrical geometry.
متن کاملOptical patterning of features with spacing below the far-field diffraction limit using absorbance modulation.
Absorbance modulation is an approach that enables the localization of light to deep sub-wavelength dimensions by the use of photochromic materials. In this article, we demonstrate the application of absorbance modulation on a transparent (quartz) substrate, which enables patterning of isolated lines of width 60 nm for an exposure wavelength of 325 nm. Furthermore, by moving the optical pattern ...
متن کاملAdiabatic far-field sub-diffraction imaging
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic wave...
متن کاملDevelopment of optical hyperlens for imaging below the diffraction limit.
We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results d...
متن کاملRealization of optical superlens imaging below the diffraction limit
Recently, the concept of superlensing has received considerable attention for its unique ability to produce images below the diffraction limit. The theoretical study has predicted a ‘superlens’ made of materials with negative permittivity and/or permeability, is capable of resolving features much smaller than the working wavelength and a near-perfect image can be obtained through the restoratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2020
ISSN: 1094-4087
DOI: 10.1364/oe.380866